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Abstract

In the moderately large deflection plate theory of von Karman and Chu–Herrmann, one can formulate
dynamic equations of a thin plate by considering either the transverse and in-plane displacements, w–u–v

formulation, or the transverse displacement and Airy function, w–F formulation. Previously, for a simply
supported plate we have investigated the Hamiltonian property of modal equations obtained by the
Galerkin representation under w–u–v and w–F formulations. We extend here such investigations to a
rectangular clamped plate with similar conclusions. That is, the modal equations of w–F formulation are
Hamiltonian and hence energy conserving at any order of truncation. On the other hand, the corresponding
modal equations of w–u–v formulation do not conserve energy when only a small number of sine terms are
included in the in-plane displacement expansions.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The classical linear plate theory deals exclusively with the inertia and plate bending of
transverse displacement w: Beyond that, the so-called non-linear theory of von Karman and
Chu–Herrmann [1] incorporates the first order effects of in-plane displacements u and v; which
give rise to membrane stretching. The three displacement equations for w; u; and v are called
w–u–v formulation of a moderately large-deflection plate theory [2]. For a thin plate, it is
customary to ignore the inertia of in-plane displacements in comparison to the transverse motion.
This then permits us to replace the two in-plane static equations for u and v with a compatibility
relation for the Airy stress function F ; and hence the alternate w–F formulation. Although the
w–u–v and w–F formulations are equivalent in theory, they are not in practice. This is because
w; u; v; and F must all be expressed by a finite degree-of-freedom representation by whatever the
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means chosen for actual computations, such as the Galerkin representation, finite difference, and
finite element. In Ref. [3], we have compared the modal equations of two plate formulations
derived by the Galerkin procedure for a simply supported plate, and the intent of this paper is to
extend such a comparison to a rectangular clamped plate.
Basic equations of the two plate formulations are briefly summarized (Section 2) in a

dimensionless form for uniformity. Since the plate equations are couched in Hamilton’s
variational principle, the total kinetic and strain (potential) energy must be conserved independent
of the representation for plate dynamics. In the w–F formulation, the modal equations of
Galerkin representation are Hamiltonian, which is a stronger dynamical property than merely
energy conserving. For the simply supported plate [3], plate modes can be formed by a product of
simply supported beam modes which are sine functions. On the other hand, such a simple
construction does not work for a clamped plate, hence the products of clamped-beam modes are
called pseudo-plate modes (Section 3). We can however express the plate modes of clamped plate
by a linear combination of the pseudo-plate modes, and this is what complicates the analysis of a
clamped plate. Nonetheless, the upshot of the present analysis parallels the simply supported plate
case [3]. That is, in the w–F formulation, modal equations are Hamiltonian and hence energy
conserving (Section 4), whereas the modal equations of w–u–v formulation do not conserve energy
when only a dozen of sine terms is included in the in-plane displacement expansions (Section 5).
Previously we have presented a gradual approach to energy conservation of the w–u–v

formulation by successively including more and more sine terms in the in-plane displacement
expansions [3]. However, such successive analyses are not feasible to carry out here, for they
involve too excessive algebraic manipulations.

2. Synopsis of plate equations in dimensionless form

Summarized in Ref. [3] are basic equations of the von Karman–Chu–Herrmann plate theory
for a moderately large deflection. In three plate displacements (u; v; w) along the usual Cartesian
co-ordinates (x; y; z), the classical linear theory considers the inertia and plate bending due to
transverse displacement w only. The non-linear plate formulation of von Karman and
Chu–Herrmann [1] includes the first- order geometric non-linearity of membrane stretching by
the in-plane displacements u and v: For a thin plate, one may ignore the inertia of in-plane
displacement motion along with the rotatory effects [2]. Then, the static in-plane displacement
equations for (u; v) and transverse displacement equation for w constitute the w–u–v formulation
of a moderately large deflection plate. Instead, by combining the static constraints on u and v into
a compatibility relation for Airy function F ; one ends up with only the transverse displacement
equation for w and compatibility relation for F ; the so-called w–F formulation. For uniformity,
we have normalized in Ref. [3] the plate co-ordinates (x; y) by the plate side Lx in x; transverse
displacement w by the plate thickness h; in-plane displacements (u; v) by h2=Lx; Airy stress
function F by D; the stress resultants ðNx;Ny;NxyÞ by D=L2

x; and time t by L2
x=p

2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
: Here,

D ¼ Eh3=12ð1� n2Þ is the flexural rigidity, E denotes Young’s modulus of elasticity, r is the mass
density, and n is the Poisson’ ratio. With these normalizations, we find that only the aspect ratio
r ¼ Lx=Ly (where Ly is the plate side in y) and n would show up in the dimensionless plate
equations to be presented.
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2.1. The w–u–v formulation

The dynamic equation for transverse displacement becomes in dimensionless form

@2w

@t2
þ

1

p4
@4w

@x4
þ 2r2

@4w

@x2 @y2
þ r4

@2w

@y4

� �

¼
12

p4
Nx

@2w

@x2
þ 2rNxy

@2w

@x @y
þ r2Ny

@2w

@y2

� �
; ð1Þ

in which the stress resultants ðNx;Ny;NxyÞ are governed by the following static equations:

@Nx

@x
þ r

@Nxy

@y
¼ 0;

@Nxy

@x
þ r

@Ny

@y
¼ 0: ð2Þ

Here, Nx ¼ @u=@x þ nr@v=@y þ 1
2
ð@w=@xÞ2 þ 1

2
nr2ð@w=@yÞ2; Ny ¼ n @u=@x þ r@v=@y þ 1

2
nð@w=@xÞ2 þ

1
2

r2ð@w=@yÞ2 and Nxy ¼ 1
2
ð1� nÞðr@u=@y þ @v=@x þ rð@w=@xÞð@w=@yÞÞ: By writing out Eq. (2) in

detail, we have the usual in-plane displacement equations but without the inertia terms:

@2u

@x2
þ d1r

2 @
2u

@y2
þ d2r

@2v

@x @y
þ

@w

@x

@2w

@x2
þ d2r

2 @w

@y

@2w

@x @y
þ d1r

2 @w

@x

@2w

@y2
¼ 0;

d1
@2v

@x2
þ r2

@2v

@y2
þ d2r

@2u

@x @y
þ d1r

@w

@y

@2w

@x2
þ d2r

@w

@x

@2w

@x @y
þ r3

@w

@y

@2w

@y2
¼ 0; ð3Þ

where d1 ¼ ð1� nÞ=2 and d2 ¼ ð1þ nÞ=2: Note that Eqs. (1)–(3) are identical to Eqs. (10)–(12) of
Ref. [3].
Although Eqs. (1) and (2) are the starting point of discussion in this paper, it is important to

recall that they have been derived by invoking Hamilton’s variational principle. This involves the
expression for kinetic energy,

Uk ¼
1

2

Z 1

0

Z 1

0

@w

@t

� �2

dx dy; ð4Þ

and strain energy which we split into the bending strain energy,

Ub ¼
1

2p4

Z 1

0

Z 1

0

@2w

@x2

� �2

þ2nr2
@2w

@x2

@2w

@y2
þ r4

@2w

@y2

� �2
 

þ 2ð1� nÞr2
@2w

@x @y

� �2
!
dx dy; ð5Þ

and membrane stretching strain energy,

Um ¼
6

p4

Z 1

0

Z 1

0

e2x þ 2nexey þ e2y þ
ð1� nÞ

2
e2xy

� �
dx dy; ð6Þ

where ex ¼ @u=@x þ 1
2
ð@w=@xÞ2; ey ¼ r@v=@y þ 1

2
r2ð@w=@yÞ2; and exy ¼ r@u=@y þ @v=@x þ

rð@w=@xÞð@w=@yÞ: Note that Eqs. (4)–(6) are also the dimensionless energy expressions.
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2.2. The w–F formulation

By virtue of Nx ¼ r2@2F=@y2; Ny ¼ @2F=@x2 and Nxy ¼ �r@2F=@x @y; we can rewrite the
transverse displacement equation (1) in terms of the Airy stress function F ;

@2w

@t2
þ

1

p4
@4w

@x4
þ 2r2

@4w

@x2 @y2
þ r4

@2w

@y4

� �

¼
12r2

p4
@2w

@x2

@2F

@y2
� 2

@2w

@x @y

@2F

@x @y
þ

@2w

@y2

@2F

@x2

� �
: ð7Þ

Moreover, two members of Eq. (2) are combined to give a single compatibility relation of the
fourth order,

r�2 @
4F

@x4
þ 2

@4F

@x2 @y
þ r2

@2F

@y4
¼ ð1� n2Þ

@2w

@x @y

� �2

�
@2w

@x2

@2w

@y2

 !
: ð8Þ

Note that Eqs. (7) and (8) are Eqs. (17) and (18) of Ref. [3], to which the readers are referred for
derivation. Although the expressions for kinetic energy (4) and bending strain energy (5) do not
involve F ; it is necessary to express the membrane stretching strain energy (6) in terms of F :

Um ¼
6

p4ð1� n2Þ

Z 1

0

Z 1

0

@2F

@x2

� �2

�2nr2
@2F

@x2

@2F

@y2
þ r4

@2F

@y2

� �2
 

þ 2ð1þ nÞr2
@2F

@x @y

� �2
!
dx dy: ð9Þ

A brief summary of thin-plate equations of the two plate formulations is presented here, and the
readers are referred to Refs. [2,4–6] for detailed discussions.

3. Plate modal functions for a clamped plate

For the Galerkin representation, it is essential that one has access to plate modal functions, or
simply called plate modes, as the basis functions to expand the transverse displacement. For the
simply supported plate [3], we have expanded w ¼

P
n¼1;3

P
m¼1;3 an;m ðtÞcnðxÞcmð yÞ in the first

four symmetric plate modes, where ciðxÞ ¼
ffiffiffi
2

p
sinðipxÞ are the normalized beam modes

with the simply supported beam end conditions, cn ¼ c00
n ¼ 0 at x ¼ 0 and 1. To simplify

the notations, we let column vectors q ¼ ðq1; q2; q3; q4Þ9ða1;1; a1;3; a3;1; a3;3Þ and U ¼
ðF1;F2;F3;F4Þ9fc1ðxÞc1ð yÞ;c1ðxÞc3ð yÞ;c3ðxÞc1ð yÞ;c3ðxÞc3ð yÞg: We then recast the summa-
tion into a scalar product ðq 	 UÞ; written as qTU also, where T is the transpose, and write the
displacement expansion in a compact form,

w ¼ ðq 	 UÞ 
 qTU; ð10Þ

indicating that qiðtÞ are modal amplitudes of the plate modes Fiðx; yÞ: Technically speaking, by
plate modes we mean that Fiðx; yÞ are the eigenfunctions of biharmonic operator r4; so that they
are in fact plate-bending modes. It is indeed fortuitous that fcnðxÞcmð yÞg are the actual plate
modes of a rectangular simply supported plate. To see this, the inertial and plate bending terms of
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Eqs. (1) and (7) give rise to a linear modal equation

.qþ Cq ¼ 0; ð11Þ

where the overhead dot denotes @=@t: That stiffness matrix C turns out diagonal implies U ¼
fcnðxÞcmð yÞg are the plate modes of a simply supported plate.
In an analogous fashion, let us construct plate modes U ¼ ffnðxÞfmð yÞg for a clamped plate by

the normalized clamped-beam modes

fiðxÞ ¼ cosh cix� cos cixþ
ðcos ci � cosh ciÞ
ðsin ci � sinh ciÞ

ðsin cix� sinh cixÞ; ð12Þ

where c1ðE4:730Þ; c2ðE7:853Þ; c3ðE10:996Þ; c4ðE14:137Þy are the roots of cos c cosh c ¼ 1 [7].
With Eq. (12), however, the stiffness matrix C ¼ fCtrue

i; j g is non-diagonal,

Ctrue
i; j ¼ p�4

�

ð1þ r4Þc41 þ 2r2b21 2r2b1b2 2r2b1b2 2r2b2
2

c41 þ r4c43 þ 2r2b1b3 2r2b2
2 2r2b2b3

r4c41 þ c43 þ 2r2b1b3 2r2b2b3

Symmetric ð1þ r4Þc43 þ 2r2b2
3

0
BBBB@

1
CCCCA;

ð13Þ

with bi ¼ cið2ðcos ci � cosh ciÞ þ ciðsin ci þ sinh ciÞÞ=ðsin ci � sinh ciÞ for i ¼ 1 or 3 and b2 ¼
4c21c

2
3ðwðc1; c3Þ � wðc3; c1ÞÞ=fðc41 � c43Þðsin c1 � sinh c1Þðsin c3 � sinh c3Þg; where wð p; qÞ ¼

pfðcos p � cosh pÞðsin q � sinh qÞ þ sin p sinh pðcosh q sin q � cos q sinh qÞg: Here, the superscript
true in Ctrue

i; j refers to that true clamped-beam modes fnðxÞ are used in Eq. (13).
Note that ffnðxÞfmð yÞg do not represent the actual plate modes, and hence are called pseudo-

plate modes of the clamped plate. There is however a standard procedure for constructing actual
plate modes by a linear combination of ffnðxÞfmð yÞg: We begin by decomposing C into the
eigenvectors ei for eignvalues li: Let us now introduce a column vector Q ¼ ðQ1;Q2;Q3;Q4Þ of
new modal amplitudes Qi; which are related to the old qi by

q ¼ TQ; ð14Þ

where T ¼ fe1; e2; e3; e4g is a matrix formed by the eigenvectors ei in the columns. On the one
hand, by introducing Eq. (14) into Eq. (11) we obtain a new modal equation .Qþ kQ ¼ 0; where k
is a diagonal matrix with eigenvalues li along its diagonal. On the other hand, by inserting
Eq. (14) into Eq. (10) we have an alternate expansion

w ¼ QTH; ð15Þ

where the column vector H ¼ ðY1;Y2;Y3;Y4Þ has the components Hi ¼ ðei 	 Uðx; yÞÞ: Thus,
we have expressed actual plate modes H in a linear combination of pseudo-plate modes
U ¼ ffnðxÞfmð yÞg; and the modal equation for Q now has a diagonal stiffness matrix. For a

ARTICLE IN PRESS

J. Lee / Journal of Sound and Vibration 275 (2004) 649–664 653



numerical illustration for r ¼ 0:9;

Ctrue
i; j ¼

11:03 �1:99 �1:99 1:57

123:83 1:57 �16:0

173:67 �16:0

Sym: 411:21

0
BBB@

1
CCCA

has eigenvectors e1 ¼ ð0:999; 0:0171; 0:0118;�0:00278Þ; e2 ¼ ð�0:0167; 0:998;�0:0144; 0:0547Þ;
e3 ¼ ð�0:0118; 0:0105; 0:997; 0:0677Þ; and e4 ¼ ð0:00451;�0:0555;�0:067; 0:996Þ for the eigenva-
lues l ¼ ð10:97; 122:97; 172:63; 413:18Þ: Then, the actual plate modes are given by
Y1 ¼ 0:999f1ðxÞf1ð yÞ þ 0:0171f1ðxÞf3ð yÞ þ 0:0118f3ðxÞf1ð yÞ � 0:00278f3ðxÞf3ð yÞ;
Y2 ¼ �0:0167f1ðxÞf1ðyÞ þ 0:998f1ðxÞf3ðyÞ � 0:0144f3ðxÞf1ðyÞ þ 0:0547f3ðxÞf3ðyÞ;
Y3 ¼ �0:0118f1ðxÞf1ð yÞ þ 0:0105f1ðxÞf3ðyÞ þ 0:997f3ðxÞf1ð yÞ þ 0:0677f3ðxÞf3ð yÞ;
Y4 ¼ 0:00451f1ðxÞf1ð yÞ � 0:0555f1ðxÞf3ð yÞ � 0:067f3ðxÞf1ð yÞ þ 0:996f3ðxÞf3ð yÞ:
Since ðY1;Y2;Y3;Y4ÞEð0:999f1ðxÞf1ðyÞ; 0:998f1ðxÞf3ðyÞ; 0:997f3ðxÞf1ðyÞ; 0:996f3ðxÞf3ðyÞÞ; it

is shown that ffnðxÞfmðyÞg represent a good approximation to the actual clamped-plate modes
Yi; although the approximation gets slightly worse with the increasing order of plate modes.
Instead of Eq. (12), the trigonometric functions BnðxÞ ¼ sinðnpxÞ sinðpxÞ 
 1

2
ðcosðn � 1Þpx�

cosðn þ 1ÞpxÞ satisfying the end condition Bn ¼ B0n ¼ 0 at x ¼ 0 and 1 have been used exclusively in
the literatures [5,8–11] to construct plate modes of a clamped plate for analytic expediency. Here,
we form an orthonormal set of BnðxÞ by the Gram–Schmidt procedure [12]

j1 ¼
ffiffi
8
3

q
B1ðxÞ; j2 ¼ 2B2ðxÞ; j3 ¼

ffiffiffiffi
24
5

q
B3ðxÞ þ

ffiffiffiffi
8
15

q
B1ðxÞ;

j4 ¼
ffiffiffiffi
16
3

q
B4ðxÞ þ

ffiffi
4
3

q
B2ðxÞ;y ð16Þ

As shown in Fig. 1, jnðxÞ are in a close agreement with fnðxÞ over the entire x ¼ ð0; 1Þ; except for
where the peaks and troughs are. Hence, we shall simply call jnðxÞ trigonometric clamped-beam
modes in contrast to the true clamped-beam modes fnðxÞ: Not surprisingly, the stiffness matrix
C ¼ fC

trig
i; j g based on trigonometric clamped-beam modes jnðxÞ is again non-diagonal:

C
trig
i; j ¼

16

45

�

5ð3þ 2r2 þ 3r4Þ �2
ffiffiffi
5

p
r2ð2þ 3r2Þ �2

ffiffiffi
5

p
ð2þ 3r2Þ 8r2

15þ 80r2 þ 444r4 8r2 �2
ffiffiffi
5

p
ð3þ 16r2Þ

444þ 80r2 þ 15r4 �2
ffiffiffi
5

p
r2ð16þ 3r2Þ

Symmetric 4ð111þ 160r2 þ 111r4Þ

0
BBBBB@

1
CCCCCA:

ð17Þ

From

C
trig
i; j ¼

11:71 �5:70 �7:35 2:30

131:95 2:30 �25:38

184:41 �23:74

Sym: 445:76

0
BBB@

1
CCCA
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for r ¼ 0:9; we find eigenvectors e1 ¼ ð0:998; 0:0463; 0:0417;�0:00031Þ; e2 ¼ ð�0:0456;
0:996;�0:0137; 0:0794Þ; e3 ¼ ð�0:0417; 0:0046; 0:995; 0:0905Þ; and e4 ¼ ð0:00776;�0:080;�0:0896;
0:993Þ for the eigenvalues l ¼ ð11:14; 130:16; 182:56; 449:97Þ: Hence, we have the approximation
of ðY1;Y2;Y3;Y4ÞEð0:998j1ðxÞj1ðyÞ; 0:996j1ðxÞj3ðyÞ; 0:995j3ðxÞj1ðyÞ; 0:993j3ðxÞj3ðyÞÞ: By
comparison, we see that ffnðxÞfmðyÞg approximate the actual plate modes a little better than
fjnðxÞjmðyÞg: However, since neither of them are the exact plate modes of a clamped plate, the
analytical ease of jnðxÞ far outweighs a slight improvement in the definition of plate modes
formed by the true clamped-beam modes fnðxÞ:
To sum up, there are two strategies for the Galerkin representation: either obtain modal

equations for q from the pseudo-plate mode expansion (10) and then transform them into the
modal equations for Q by Eq. (14), or derive directly the modal equations for Q from the actual
plate mode expansion (15). In this paper, we resort to the former to parallel the previous analysis
of simply supported plate [3].

4. Two plate equations for w and F

The w–F formulation is based on the transverse displacement equation (7) together with F ;
supplemented by compatibility relation (8). As pointed out in Section 3, we shall derive the modal
equations for q by expanding transverse displacement w in U ¼ ffnðxÞfmð yÞg or fjnðxÞjmð yÞg; as
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indicated by Eq. (10). However, by conventional wisdom we represent the Airy stress function by

F ¼ �
Cyx2

2
�

Cxy2

2r2
þ ð1� n2Þ

X
p¼0;2;4;y;M
ð p¼qa0Þ

X
q¼0;2;4;y;M

fp;q cosð ppxÞ cosðqpyÞ; ð18Þ

in which the cosine sum extends to upper limit M: We call the first two right-hand side terms a
homogeneous part Fh and the cosine sum the particular solution Fp: It is fair to say that
representation (18) is Achilles’ heel of the w–F formulation, because zero in-plane edge
displacement conditions; i.e.,

uðx; yÞ ¼ vðx; yÞ ¼ 0; ð19Þ

at x ¼ 0 and 1 for all y and at y ¼ 0 and 1 for all x; cannot be translated into the equivalent
boundary conditions for F : Hence, a way out of this predicament has been suggested by imposing
certain boundary constraints on F in an average (integral) sense [4,5,13]. Of these, the following
are relevant for the present discussion.
First of all, that no shear stresses exist around the plate edges is expressed on average by the

integral constraints
R 1
0 ð@

2F=@x @yÞx¼0;1dy ¼
R 1
0 ð@

2F=@x @yÞy¼0;1dx ¼ 0; and thereby justifying the
cosine expansion of Fp: Secondly, zero in-plane displacements around the plate edges are
expressed, again on average, by the integral constraints

Z 1

0

Z 1

0

1

ð1� n2Þ
r2
@2F

@y2
� n

@2F

@x2

� �
�

1

2

@w

@x

� �2
 !

dx dy ¼ 0;

Z 1

0

Z 1

0

1

ð1� n2Þ
@2F

@x2
� nr2

@2F

@y2

� �
�

r2

2

@w

@y

� �2
 !

dx dy ¼ 0;

from which the constants in Fh are determined:

Cx ¼ � 1
2
fð1þ r2nÞd1;1;0q

2
1 þ ðd1;1;0 þ r2nd3;3;0Þq2

2

þ ðr2nd1;1;0 þ d3;3;0Þq23 þ ð1þ r2nÞd3;3;0q
2
4

þ 2r2nd1;3;0q1q2 þ 2d1;3;0q1q3 þ 2d1;3;0q2q3 þ 2r2nd1;3;0q3q4g;

Cy ¼ � 1
2
fðr2 þ nÞd1;1;0q

2
1 þ ðnd1;1;0 þ r2d3;3;0Þq2

2

þ ðr2d1;1;0 þ nd3;3;0Þq2
3 þ ðr2 þ nÞd3;3;0q

2
4

þ 2r2d1;3;0q1q2 þ 2nd1;3;0q1q3 þ 2nd1;3;0q2q3 þ 2r2d1;3;0q3q4g; ð20Þ

where di; j;k ¼
R 1
0 g

0
iðxÞg

0
jðxÞ cosðkpxÞ dx: Note here and in what follows that gi ¼ fiðxÞ or jiðxÞ is

depending on the choice of beam modes. Much has been argued for or against the use of Eq. (18)
in the literatures [4,5,13], and we have nothing new to add to the controversy. We shall however
take here a utilitarian view and judge the consequences of Eq. (18) a posteriori by the internal
consistency of modal equations that are derived from it. Since Fh makes no contribution to the
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left-hand side of Eq. (8), fp;q are quadratic in qn and hence, for instance, we have

f2;2 ¼
r2

4p4ð1þ r2Þ2
fq21ðd

2
1;1;2 � c21;1;2Þ þ ðq2

2 þ q23Þðd1;1;2d3;3;2 � c1;1;2c3;3;2Þ

þ q24ðd
2
3;3;2 � c23;3;2Þ þ q1ðq2 þ q3Þð2d1;1;2d1;3;2 � c1;1;2c1;3;2 � c1;1;2c3;1;2Þ

þ 2q1q4ðd2
1;3;2 � c1;3;2c3;1;2Þ þ q4ðq2 þ q3Þð2d1;3;2d3;3;2 � c1;3;2c3;3;2 � c3;1;2c3;3;2Þ

þ q2q3ð2d2
1;3;2 � c21;3;2 � c23;1;2Þg;

where ci; j;k ¼
R 1
0 giðxÞg

00
j ðxÞ cosðkpxÞ dx:

With the evaluation of Cx; Cy and fp;q; we can carry out the Galerkin procedure by inserting
Eqs. (10) and (18) into Eq. (7) and subsequently sorting out modal equations for q. The upshot is
then linear modal Eq. (11) to which is appended a myriad of cubic amplitude terms arising from
the right-hand side of Eq. (7)

.qþ Cqþ K ¼ 0; ð21Þ

where the components of K ¼ ðk1; k2; k3; k4Þ are cubic expressions:

k1 ¼ 4k1q31 þ 3k5q2
1q2 þ 3k6q21q3 þ 2k11q1q2q3 þ k12q2

2q3

þ k13q2q23 þ 2k14q1q
2
2 þ 2k15q1q23

þ 2k9q1q2q4 þ 2k10q1q3q4 þ k18q2q3q4 þ 2k19q1q
2
4

þ k21q32 þ k22q33 þ k25q22q4 þ k26q23q4

þ k29q2q24 þ k30q3q24 þ 3k33q2
1q4 þ k34q3

4;

k2 ¼ 4k2q3
2 þ k5q31 þ 3k7q22q4 þ k9q2

1q4 þ k11q2
1q3 þ 2k12q1q2q3

þ k13q1q
2
3 þ 2k14q21q2 þ 2k16q2q

2
4 þ k18q1q3q4 þ 2k20q2q

2
3

þ 3k21q1q2
2 þ 3k23q2

2q3 þ k24q3
3 þ 2k25q1q2q4 þ 2k27q2q3q4 þ k28q23q4

þ k29q1q
2
4 þ k31q3

4 þ k35q3q
2
4;

k3 ¼ 4k3q3
3 þ k6q3

1 þ 3k8q2
3q4 þ k10q2

1q4 þ k11q2
1q2 þ k12q1q

2
2

þ 2k13q1q2q3 þ 2k15q2
1q3 þ 2k17q3q24

þ k18q1q2q4 þ 2k20q22q3 þ 3k22q1q
2
3 þ k23q3

2 þ 3k24q2q23
þ 2k26q1q3q4 þ 2k28q2q3q4 þ k30q1q

2
4

þ k32q3
4 þ k35q2q

2
4 þ k27q2

2q4;

k4 ¼ 4k4q34 þ k7q3
2 þ k8q33 þ k9q2

1q2 þ k10q2
1q3 þ 2k16q22q4

þ 2k17q23q4 þ k18q1q2q3 þ 2k19q2
1q4

þ k25q1q
2
2 þ k26q1q

2
3 þ k27q2

2q3 þ k28q2q
2
3 þ 2k29q1q2q4

þ 2k30q1q3q4 þ 3k31q2q
2
4 þ 3k32q3q24

þ k33q3
1 þ 3k34q1q24 þ 2k35q2q3q4: ð22Þ
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Note that each ki has exactly 20 (¼ 6!=3!3!) cubic terms, corresponding to the combinations
with repetitions of forming qcqmqn out of q. Besides, the coefficients k1;y;k35 involve not
only parameters r and n; but also the integrals ci; j;k; di; j;k; bi; j;k ¼

R 1
0 giðxÞgjðxÞ cosðkpxÞ dx;

and ei; j;k ¼
R 1
0 giðxÞg

0
jðxÞ sinðkpxÞ dx which depend on the beam modes gi ¼ fiðxÞ or jiðxÞ:

Let us denote by ktrig
n the coefficients of ki evaluated with trigonometric clamped-beam modes

jnðxÞ; and present here only the following two as typical expressions:

ktrig
1 ¼

8

3
1þ r4 þ 2r2nþ

4

9
r4ð1� n2Þ

17

8
ð1þ r�4Þ

��

þ
4

ð1þ r2Þ2
þ

1

ð4þ r2Þ2
þ

1

ð1þ 4r2Þ2

��

and

ktrig
10 ¼

32

45
ffiffiffi
5

p 30r2ðr2 þ nÞ þ ð1� n2Þ 224þ r4 68�
100

ð1þ r2Þ2

���

þ
668

ð4þ r2Þ2
þ

671

ð1þ 4r2Þ2
þ

660

ð9þ r2Þ2
þ

39

ð9þ 4r2Þ2

���
:

Instead of the lengthy expressions, we present in Table 1 the numerical values of ktrig
n for r ¼ 0:9

and n ¼
ffiffiffiffiffiffi
0:1

p
: Recall that fp;q ¼ 0 for p or q > 6 for the simply supported plate [3]. Here it turns

out that fp;q ¼ 0 for p or q > 8; so that Fp is again a truncated cosine series for a clamped
plate when we use trigonometric clamped-beam modes jnðxÞ: On the other hand, things are a
little complicated when the true clamped-beam modes fnðxÞ are used. Since ktrue

n are too long to
write out in detail, Table 2 summarizes their numerical values for r ¼ 0:9; n ¼

ffiffiffiffiffiffi
0:1

p
; and M ¼ 8:

More importantly, we find that fp;qa0 for all p and q under the true clamped-beam modes fnðxÞ:
Yet, the numerical values of fp;q are so small for p and q > 8 that there is hardly a noticeable
difference in the numerical values of ktrue

n for M ¼ 8 and 10, as shown in Tables 2 and 3,
respectively.
For the internal consistency of cubic vector K, we examine the Hamiltonian structure of

Eq. (22). With the conjugate co-ordinates p ¼ ’q; the inertial term of Eq. (21) is related to kinetic
energy Hk ¼ 1

2
pTp and the stiffness term to plate bending strain energy Hb ¼ 1

2
qTCq: We infer the

membrane stretching strain energy by integration
P4

i¼1

R
ki dqi and, subsequently, elimination of

ARTICLE IN PRESS

Table 1

Numerical values of ktrig
n for r ¼ 0:9; n ¼

ffiffiffiffiffiffi
0:1

p
; and M ¼ 8

k1 ¼ 10:46; k2 ¼ 230:16; k3 ¼ 337:18; k4 ¼ 573:22; k5 ¼ �28:57;
k6 ¼ �32:23; k7 ¼ �354:50; k8 ¼ �496:47; k9 ¼ �82:06; k10 ¼ �93:62;
k11 ¼ 92:67; k12 ¼ �242:95; k13 ¼ �250:85; k14 ¼ 115:66; k15 ¼ 141:68;
k16 ¼ 975:91; k17 ¼ 1306:90; k18 ¼ 484:31; k19 ¼ 125:52; k20 ¼ 477:85;
k21 ¼ �110:14; k22 ¼ �160:02; k23 ¼ 70:87; k24 ¼ 93:36; k25 ¼ 115:02;
k26 ¼ 171:04; k27 ¼ �255:91; k28 ¼ �372:45; k29 ¼ �176:43; k30 ¼ �263:39;
k31 ¼ �154:47; k32 ¼ �93:70; k33 ¼ 7:61; k34 ¼ �5:30; k35 ¼ �15:29:
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the redundant quartic terms [3]

Hm ¼ k1q41 þ k2q4
2 þ k3q43 þ k4q4

4 þ k5q3
1q2 þ k6q3

1q3 þ k7q32q4

þ k8q33q4 þ k9q2
1q2q4 þ k10q21q3q4

þ k11q2
1q2q3 þ k12q1q

2
2q3 þ k13q1q2q23 þ k14q21q

2
2 þ k15q21q

2
3

þ k16q2
2q

2
4 þ k17q2

3q
2
4 þ k18q1q2q3q4

þ k19q2
1q

2
4 þ k20q2

2q
2
3 þ k21q1q

3
2 þ k22q1q

3
3 þ k23q3

2q3

þ k24q2q
3
3 þ k25q1q

2
2q4 þ k26q1q

2
3q4 þ k27q22q3q4

þ k28q2q
2
3q4 þ k29q1q2q

2
4 þ k30q1q3q24 þ k31q2q34

þ k32q3q
3
4 þ k33q3

1q4 þ k34q1q
3
4 þ k35q2q3q

2
4:

From the total Hamiltonian Hðp; qÞ ¼ Hk þ Hb þ Hm; one immediately rederives Eq. (21) by
Hamilton’s equations of motion [14],

’qi ¼
@H

@pi

; ’pi ¼ �
@H

@qi

; ð23Þ

hence the modal equations are Hamiltonian. Note that being Hamiltonian is a stronger dynamical
property than merely energy conserving. In retrospect, the existence of the Hamiltonian is
anticipated from the energy discussion in Section 2, whereby Hðp; qÞ is nothing but the total plate
energy Uk þ Ub þ Um: First of all, we see from Eq. (4) that Uk ¼ Hk by inspection, because of the
orthonormality of beam modes. We then show that Ub ¼ Hb by inserting Eq. (10) into Eq. (5) and
similarly that Um ¼ Hm upon introducing Eq. (18) into Eq. (9), after the indicated integrations are
carried out. The algebraic tasks have been facilitated by symbolic manipulation software, such as
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Table 2

Numerical values of ktrue
n for r ¼ 0:9; n ¼

ffiffiffiffiffiffi
0:1

p
; and M ¼ 8

k1 ¼ 8:53; k2 ¼ 191:15; k3 ¼ 281:25; k4 ¼ 483:85; k5 ¼ �20:80;
k6 ¼ �23:37; k7 ¼ �276:77; k8 ¼ �392:59; k9 ¼ �58:05; k10 ¼ �67:54;
k11 ¼ 64:47; k12 ¼ �175:48; k13 ¼ �182:52; k14 ¼ 90:62; k15 ¼ 111:74;
k16 ¼ 785:82; k17 ¼ 1055:87; k18 ¼ 346:96; k19 ¼ 102:25; k20 ¼ 369:77;
k21 ¼ �77:75; k22 ¼ �114:62; k23 ¼ 42:59; k24 ¼ 58:02; k25 ¼ 75:97;
k26 ¼ 115:66; k27 ¼ �153:63; k28 ¼ �234:19; k29 ¼ �121:92; k30 ¼ �185:74;
k31 ¼ �96:45; k32 ¼ �45:50; k33 ¼ 5:18; k34 ¼ �6:48; k35 ¼ �22:56:

Table 3

Numerical values of ktrue
n for r ¼ 0:9; n ¼

ffiffiffiffiffiffi
0:1

p
; and M ¼ 10

k4 ¼ 484:41; k7 ¼ �276:80; k8 ¼ �392:61; k13 ¼ �182:53; k16 ¼ 786:04;
k17 ¼ 1056:03; k18 ¼ 346:98; k20 ¼ 369:78; k24 ¼ 58:01; k25 ¼ 75:96;
k26 ¼ 115:65; k27 ¼ �153:58; k28 ¼ �234:16; k29 ¼ �121:88; k30 ¼ �185:72;
k31 ¼ �96:53; k32 ¼ �45:47; k34 ¼ �6:51; k35 ¼ �22:67;

The remaining kn are same as in Table 2 up to the first two decimal digits.
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MATHEMATICATM [15]. In this paper, the existence of Hðp; qÞ will be taken as the a posteriori
justification for the Airy function expansion (18), which is the cornerstone of the w–F
formulation.
So far, we have discussed the Hamiltonian property of Eq. (21) which is the modal equation of

pseudo-plate modes Uðx; yÞ: However, for the modal equation of actual plate modes Hðx; yÞ; we
can transform Hðp; qÞ into HðP;QÞ ¼ 1

2
PTPþ 1

2
QTkQþ HmðQÞ by Eq. (14), where P ¼ ’Q is the

new conjugate co-ordinates. Then, the modal equations for Q are derived from Hamilton’s
equations of motion

’Qi ¼
@H

@Pi

; ’Pi ¼ �
@H

@Qi

: ð24Þ

They are in fact identical to what one might have obtained by repeating the Galerkin procedure
from alternate transverse displacement expansion (15).

5. Three plate equations for w; u; and v

Consistent with Eq. (10), we introduce the following expansions for in-plane displacements:

u ¼
X

i¼2;4;6

X
j¼1;3;y;N

bi; jsiðxÞsjð yÞ; v ¼
X

i¼1;3;y;N

X
j¼2;4;6

ci; jsiðxÞsjð yÞ; ð25Þ

in which siðxÞ ¼
ffiffiffi
2

p
sinðipxÞ are used to satisfy the zero plate edge conditions (19). With the four

symmetric plate modes, the index i for u and j for v take on three values (2, 4, 6). On the other
hand, the index j for u and i for v will take on all odd integers, hence we denote the upper
summation limit by N: After introducing Eqs. (10) and (25) into Eqs. (3), we sort out algebraic
equations for bi; j and ci; j by carrying out integrations with the factor snðxÞsmð yÞ: For a given N;
there are 3

2
ðN þ 1Þ components each for bi; j and ci; j; so that the simultaneous solution of Eqs. (3)

requires inverting a matrix of 3ðN þ 1Þ � 3ðN þ 1Þ; which for instance is 6� 6 for N ¼ 1: It is
therefore not feasible to write down explicit expressions for bi; j and ci; j; as we have presented an
analytical expression for f2;2 in Section 4. In any event, bi; j and ci; j are quadratic in qn; so are
ðNx;Ny;NxyÞ by virtue of Eq. (2). The derivation of modal equations from Eq. (1) parallels what
we have already done in Section 4 from Eq. (7). Consequently, the modal equations for q are the
same as Eq. (21), but the components of K ¼ ðR1;R2;R3;R4Þ are now given by

R1 ¼ a11q
3
1 þ a12q

2
1q2 þ a13q1q

2
2 þ a14q

3
2 þ a15q

2
1q3 þ a16q1q2q3

þ a17q
2
2q3 þ a18q1q

2
3 þ a19q2q

2
3

þ a110q
3
3 þ a111q

2
1q4 þ a112q1q2q4 þ a113q

2
2q4

þ a114q1q3q4 þ a115q2q3q4 þ a116q
2
3q4 þ a117q1q

2
4

þ a118q2q
2
4 þ a119q3q

2
4 þ a120q

3
4;
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R2 ¼ a21q
3
1 þ a22q

2
1q2 þ a23q1q

2
2 þ a24q

3
2 þ a25q

2
1q3 þ a26q1q2q3

þ a27q
2
2q3 þ a28q1q

2
3 þ a29q2q

2
3

þ a210q
3
3 þ a211q

2
1q4 þ a212q1q2q4 þ a213q

2
2q4 þ a214q1q3q4

þ a215q2q3q4 þ a216q
2
3q4 þ a217q1q

2
4

þ a218q2q
2
4 þ a219q3q

2
4 þ a220q

3
4;

R3 ¼ a31q
3
1 þ a32q

2
1q2 þ a33q1q

2
2 þ a34q

3
2 þ a35q

2
1q3

þ a36q1q2q3 þ a37q
2
2q3 þ a38q1q

2
3 þ a39q2q

2
3

þ a310q
3
3 þ a311q

2
1q4 þ a312q1q2q4

þ a313q
2
2q4 þ a314q1q3q4 þ a315q2q3q4 þ a316q

2
3q4 þ a317q1q

2
4

þ a318q2q
2
4 þ a319q3q

2
4 þ a320q

3
4;

R4 ¼ a41q
3
1 þ a42q

2
1q2 þ a43q1q

2
2 þ a44q

3
2 þ a45q

2
1q3 þ a46q1q2q3

þ a47q
2
2q3 þ a48q1q

2
3 þ a49q2q

2
3

þ a410q
3
3 þ a411q

2
1q4 þ a412q1q2q4 þ a413q

2
2q4 þ a414q1q3q4

þ a415q2q3q4 þ a416q
2
3q4 þ a417q1q

2
4

þ a418q2q
2
4 þ a419q3q

2
4 þ a420q

3
4: ð26Þ

Note that each Ri has exactly 20 cubic terms qcqmqn identical to those in ki of Eq. (22), but
coefficients an

m of the present w–u–v formulation are different from the w–F formulation. In this
paper, we restrict ourselves to N ¼ 7 in Eqs. (25). This therefore calls for inverting a 24� 24
matrix for the solution of Eqs. (3) for bi; j and ci; j; hence going beyond N ¼ 7 would require
excessive algebraic manipulations. We now denote by K ¼ fRtrue

n g the cubic vector for the true
clamped-beam modes fiðxÞ and K ¼ fRtrig

n g for trigonometric clamped-beam modes jiðxÞ: Only
the numerical values of an

m are summarized in Tables 4 and 5 for K ¼ fRtrue
n g and K ¼ fRtrig

n g;
respectively, evaluated under r ¼ 0:9; n ¼

ffiffiffiffiffiffi
0:1

p
; and N ¼ 7: Let us now attempt to infer Hm

directly from Eq. (26). Of the quartic terms generated by integration
P4

i¼1

R
Ri dqi; the terms

qcqmqnqp do not at all share the same coefficient; for instance, we find a14q
3
2q1a1

3
a23q

3
2q1 from the

numerical values of an
m given in Tables 4 and 5. For this reason, we cannot obtain Hm fromP4

i¼1

R
Ri dqi by eliminating the redundant quartic terms, as before in the w–F formulation. This

therefore indicates that the modal equations with cubic vector K ¼ fRng are not Hamiltonian,
and hence do not conserve energy for the present w–u–v formulation with in-plane displacement
expansions (25) truncated at N ¼ 7:
To quantify departure from the Hamiltonian or energy-conservation property, let us now

directly compute the membrane stretching strain energy by inserting Eq. (25) into Eq. (6)
and carrying out the indicated integrations. We present first membrane stretching strain
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energy Utrue
m for the true clamped-beam modes fiðxÞ:

Utrue
m ¼ 8:7q41 þ 244:91q4

2 þ 365:51q43 þ 591:44q4
4

� 21:22q31q2 � 23:67q3
1q3 � 350:59q32q4

� 512:06q3
3q4 � 54:56q21q2q4 � 71:37q21q3q4

þ 64:65q21q2q3 � 177:32q1q
2
2q3 � 186:87q1q2q

2
3

þ 94:24q21q
2
2 þ 117:17q21q

2
3 þ 956:04q2

2q
2
4

þ 1322:55q23q
2
4 þ 364:99q1q2q3q4 þ 106:88q2

1q
2
4

þ 375:06q2
2q

2
3 � 61:39q1q

3
2 þ 35:55q32q3 � 90q1q

3
3

þ 48:94q2q
3
3 þ 4:66q31q4 þ 58:9q1q

2
2q4

� 124:61q2
2q3q4 þ 90:96q1q

2
3q4 � 191:62q2q

2
3q4

� 95:59q1q2q
2
4 � 142:95q1q3q

2
4

� 21:67q2q3q
2
4 � 5:72q1q

3
4 � 67:28q2q

3
4 � 21:7q3q

3
4;
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Table 5

Numerical values for an
m of K ¼ Rtrig

n for r ¼ 0:9; n ¼
ffiffiffiffiffiffi
0:1

p
; and N ¼ 7

a1m (m ¼ 1–20) 43:73=� 89:84=230:52=� 107:53=� 101:21=193:64=� 218:19=299:97=� 295:42=� 169:83=
23:4=� 167:61=102:41=� 198=501:73=192:17=256:66=� 154:07=� 300:62=� 6:9

a2m (m ¼ 1–20) �30:75=242:24=� 336:36=573:94=99:72=� 526:8=208:57=� 272:97=1067:36=95:74=
�84:26=321:91=� 685:44=512:45=� 520:14=� 382:07=� 175:53=1354:32=� 28:56=� 176:46

a3m (m ¼ 1–20) �32:76=91:94=� 238:17=70:2=291:34=� 500:95=924:38=� 496:78=286:92=853:43=
99:35=490=� 255:43=349:91=� 745:11=� 1014:3=� 274:44=� 23:74=1818:98=� 106:27

a4m (m ¼ 1–20) 7:81=� 81:64=111:35=� 226:63=� 101:74=503:52=� 250:53=177:74=� 375:51=� 328:38=
256:89=� 357:58=1314:7=� 534:76=� 49:54=1771:67=� 23:64=� 493:1=� 337:15=1448:2

Table 4

Numerical values for an
m of K ¼ Rtrue

n for r ¼ 0:9; n ¼
ffiffiffiffiffiffi
0:1

p
; and N ¼ 7

a1m (m ¼ 1–20) 34:77=� 64:36=179:5=� 96:27=� 72:1=130:37=� 175:14=220:53=� 182:71=� 143:69=
14:53=� 114:26=93:09=� 134:34=342:12=144:08=201:43=� 150:54=� 227:16=� 9:67

a2m (m ¼ 1–20) �21:37=181:51=� 276:93=594:24=65:12=� 351:63=133:98=� 182:42=740:39=67:18=
�58:11=178:97=� 677:94=342:3=� 340:2=� 278:73=� 145:92=1312:44=� 33:42=� 133:33

a3m (m ¼ 1–20) �23:92=65=� 174:62=47:37=223:47=� 368:5=740:74=� 412:95=192:44=868:31=
68:6=344:37=� 182:38=276:91=� 526:12=� 952:5=� 219:45=� 33:51=1722:1=� 78:78

a4m (m ¼ 1–20) 4:77=� 57:77=90:62=� 218:6=� 68:28=346:81=� 171:11=140:33=� 264:51=� 308:89=
203:34=� 295:26=1270:97=� 442:15=� 63:76=1678:79=� 30:11=� 381:83=� 224:99=1507:35
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and Utrig
m for trigonometric clamped-beam modes jiðxÞ:

Utrig
m ¼ 10:71q4

1 þ 318:17q42 þ 472:46q4
3 þ 756:14q44

� 29:31q3
1q2 � 32:9q3

1q3 � 478:14q32q4

� 689:08q33q4 � 83:9q21q2q4 � 63:03q21q3q4

þ 93:61q2
1q2q3 � 246:77q1q

2
2q3 � 254:55q1q2q

2
3

þ 118:99q21q
2
2 þ 144:25q2

1q
2
3 þ 1261:75q22q

2
4

þ 1741:05q2
3q

2
4 þ 495:2q1q2q3q4 þ 128:84q2

1q
2
4

þ 484:99q22q
2
3 � 113:96q1q

3
2 þ 70:4q3

2q3 � 162:71q1q
3
3

þ 93:04q2q
3
3 þ 7:33q3

1q4 þ 117:83q1q
2
2q4

� 258:13q22q3q4 þ 172:83q1q
2
3q4 � 370:69q2q

2
3q4

� 182:94q1q2q
2
4 � 262:37q1q3q

2
4

� 26q2q3q
2
4 � 7:28q1q

3
4 � 149:26q2q

3
4 � 90:53q3q

3
4:

Note that the numerical coefficients of Utrue
m and Utrig

m have been evaluated for r ¼ 0:9; n ¼
ffiffiffiffiffiffi
0:1

p
;

and N ¼ 7: According to Eq. (23), f@Um=@qig are components of the energy-conserving cubic
vector K. For instance, the first component @Utrue

m =@q1 ¼ 34:82q31 � 63:67q21q2 þ 188:48q1q
2
2?

�5:72q3
4 should be compared with Rtrue

1 ¼ 34:77q31 � 64:36q21q2 þ 179:5q1q
2
2?� 9:67q3

4 formed by
an

m of Table 4. From the numerical coefficients of fRtrue
i g and f@Utrue

m =@qig; one can estimate the
deviations in cubic amplitude terms in the range (�41%, 263%). Similarly, the deviations in
numerical coefficients of fRtrig

i g and f@Utrig
m =@qig are found in the range (�54%, 24%) when

trigonometric clamped-beam modes jiðxÞ are used. In Ref. [3], the deviations in the range
(�140%, 94%) have been reported for a simply supported plate under N ¼ 7; and we have shown
that deviations become progressively smaller as the upper summation limit N is increased up to
35. It is however not feasible to present such evidence in the present clamped-plate case, due to the
rapidly increasing algebraic manipulations beyond N ¼ 7:

6. Conclusions

Recently, Geveci [6] attempted to compare the two formulations of w–u–v and w–F by
numerically generated trajectories of the transverse displacement of a clamped thin plate.
However, the assessment of complex trajectory patterns is highly subjective and hence
inconclusive in the absence of a theoretical frame of reference for comparison. We have
previously proposed [3] a metric for such comparison, whereby modal equations derived from the
Galerkin procedure are required to conserve energy as dictated by first principles of mechanics.
This paper extends the simply supported plate analysis [3] to a clamped plate. Although the details
are a little more tedious here because the plate modes are no longer expressed in sine functions, we
arrive at the same conclusion as before. That is, the modal equations of w–F formulation are
Hamiltonian and hence energy conserving at any level of modal truncation, whereas modal
equations of the w–u–v formulation cannot conserve energy when only 12 sine terms are retained
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in the in-plane displacement expansions. For the simply supported plate [3], we have shown that
the energy conservation of w–u–v formulation improves successively as more and more sine terms
are included in the in-plane displacement expansions. However, such successive analyses are not
feasible for a clamped plate, because of the unwieldy algebraic manipulations beyond the 12 sine
expansion terms of in-plane displacements.
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